學(xué)術(shù)講座公告:Bifurcation Theory and Its Application

題目:Bifurcation Theory and Its Application
時(shí)間:11月26日(周三)13:00~16:00
地點(diǎn):文理學(xué)院報(bào)告廳(1C102)

?附:加拿大Western University郁培教授簡介及報(bào)告內(nèi)容

?

郁教授簡介:郁培教授是加拿大Western University終身教授,是動(dòng)力系統(tǒng)領(lǐng)域的國際知名專家。他涉及的研究領(lǐng)域包括動(dòng)力系統(tǒng)的穩(wěn)定性,分叉和混沌,微分方程的規(guī)范型計(jì)算,希爾伯特的16問題,生物數(shù)學(xué)以及這些理論在工程領(lǐng)域的應(yīng)用。尤其在微分方程和動(dòng)力系統(tǒng)的計(jì)算方面,他的研究小組處于世界領(lǐng)先地位。他和他的合作者已經(jīng)在國際雜志上發(fā)表了200多篇科學(xué)論文,還出版了在動(dòng)力系統(tǒng)理論和控制理論方面三部專著。他曾獲得安大略省長杰出研究獎(jiǎng)和大學(xué)優(yōu)秀教學(xué)獎(jiǎng)。

Title: Bifurcation Theory and Its Application

Abstract: In this talk, we first briefly introduce some basic concepts of dynamical systems, such as stability, bifurcation, center manifold theory and normal form theory, and then focus on Hopf bifurcation. For application, we will present a deterministic in-host infection model to study viral blips (based on our SIGEST paper published in SIAM Review, 2014). This is the first time to give a complete dynamic analysis with a simple model for studying recurrent infection. Using bifurcation theory we propose a hypothesis consisting of four conditions for the existence of viral blips, revealing the basic mechanism of such phenomenon.


?

( 講座具體信息以數(shù)字平臺(tái)通知為準(zhǔn)!)

掃碼分享本頁面
掃碼分享本頁面