主題:Vertex algebras and extended affine Lie algebras coordinated by rational quantum tori
主要內(nèi)容:In this talk, we establish a natural connection between the EALA $\widehat{sl_N}(C_q)$ coordinated by the rational quantum 2-tori $C_q$ with vertex algebra through twisted modules. Then we prove that the integrable restricted $\widehat{sl_N}(C_q)$-modules of level $\ell$ are exactly the twisted modules for certain quotient vertex algebra. Finally, we classify irreducible graded twisted modules of this quotient vertex algebra. This is a joint work with Fulin Chen, Xiaoling Liao and Shaobin Tan.
專家姓名:王清
工作單位:廈門大學(xué)
專長(zhǎng)和學(xué)術(shù)成就:國(guó)家自然科學(xué)基金優(yōu)青項(xiàng)目獲得者,福建省“高校領(lǐng)軍人才”,福建省杰出青年基金獲得者,國(guó)家高層次青年人才。主要從事無窮維李代數(shù)及頂點(diǎn)代數(shù)研究工作,在 Communications in Mathematical Physics. Advances in Mathematics, Israel Journal of Mathematics, Journal of Algebra 等雜志上發(fā)表30多篇研究論文,主持4項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目。
專家簡(jiǎn)介:王清,廈門大學(xué)數(shù)學(xué)學(xué)院教授、博士生導(dǎo)師,國(guó)家自然科學(xué)基金優(yōu)青項(xiàng)目獲得者,福建省“高校領(lǐng)軍人才”,福建省杰出青年基金獲得者,國(guó)家高層次青年人才。2008年獲得廈門大學(xué)博士學(xué)位,2007-2008美國(guó)Rutgers大學(xué)訪問學(xué)者,學(xué)習(xí)頂點(diǎn)代數(shù)。主要從事無窮維李代數(shù)及頂點(diǎn)代數(shù)研究工作,在 Communications in Mathematical Physics. Advances in Mathematics, Israel Journal of Mathematics, Journal of Algebra 等雜志上發(fā)表30多篇研究論文,主持4項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目。
時(shí)間:2021-01-18 16:30:00
地點(diǎn):線上
Vertex algebras and extended affine Lie algebras coordinated by rational quantum tori
( 講座具體信息以數(shù)字平臺(tái)通知為準(zhǔn)!)

掃碼分享本頁面