主題:Pointed modular tensor category
主要內容:A modular tensor category is pointed if every simple object is a simple current. We show that any pointed modular tensor category is equivalent to the module category of a lattice vertex operator algebra. Moreover, if the pointed modular tensor category C is the module category of a twisted Drinfeld double associated to a finite abelian group G and a 3-cocycle with coefficients in U(1), then there exists a selfdual positive definite even lattice L such that G can be realized an automorphism group of lattice vertex operator algebra $V_L,$ $V_L^G$ is also a lattice vertex operator algebra and C is equivalent to the module category of $V_L^G.$ This is a joint work with S. Ng and L. Ren.
專家姓名:董崇英
工作單位:美國加州大學Santa Cruz 分校
專長和學術成就:主要從事無窮維李代數和頂點算子代數研究,在頂點算子代數(Vertex operator algebras)、Orbifold理論以及廣義月光(Generalized moonshine)等方面的研究做出了令世界數學界交口稱贊的工作。
專家簡介:董崇英, 美國加州大學Santa Cruz 分校教授。主持多項美國國家科學基金,已在國際數學雜志上發表SCI論文一百多篇,包括國際著名數學雜志《Acta Math.》,《Duke Math. J.》,《Comm. Math. Phys.》,《Adv. Math.》等,在國際同行中具有重要影響,得到包括fields獎獲得者Drinfeld、 Zelmanov和Borcherds以及著名數學家如Beilinson和V.Kac等人的重要引用。
時間:2021-06-27 09:00:00
地點:海豐國際報告廳
Pointed modular tensor category
( 講座具體信息以數字平臺通知為準!)

掃碼分享本頁面