主題:Lattice structure of modular vertex algebras
主要內容:The integral lattice of VOA was constructed by Dong and Griess for finite automorphism group of the VOA. We will show that the general divided powers of vertex operators preserve the integral form spanned by Schur functions indexed by partition-valued functions, which generate an analog of the Kostant-Lusztig Z-form for the lattice VOA. In particular, we show that the Garland operators, counterparts of divided powers of Heisenberg elements in affine Lie algebras, also preserve the integral form. We also study the irreducible modules for the modular lattice vertex algebra.
專家姓名:景乃桓
工作單位:美國北卡州立大學
專長和學術成就:主要從事無限維李代數,量子群、表示論、代數組合和量子計算方面的研究工作。曾獲德國洪堡學者,美國富爾布萊特學者,國家杰出青年基金(B類)等殊榮。在國際主要數學刊物上發表近百篇論文,編輯著作5部。景乃桓教授在對稱函數方面的研究成果被國際上命名為“景氏算子”。
專家簡介:景乃桓,美國耶魯大學博士,美國北卡州立大學終身教授,博士生導師。
時間:2021-06-27 10:30:00
地點:海豐國際報告廳
Lattice structure of modular vertex algebras
( 講座具體信息以數字平臺通知為準!)

掃碼分享本頁面