On the hyperalgebra of the loop algebra $\widehat{\frak{gl}}_n$

主題:On the hyperalgebra of the loop algebra $\widehat{\frak{gl}}_n$
主要內容:Let $\Uz$ be the Garland integral form of $\afuglq$ introduced by Garland, where $\afuglq$ is the universal enveloping algebra of $\afgl$. Using Ringel-Hall algebras, one can naturally construct an integral form, denoted by $\afuglz$, of $\afuglq$. We prove that $\Uz$coincides with $\afuglz$. Let $\field$ be a commutative ring with unity. Assume$p=\text{char}\field>0$. We call $\sU_\field(\afgl):=\sU_\mbz(\afgl)\ot\field$ the hyperalgebra of $\afgl$. For $h\geq 1$, we use Ringel--Hall algebras to construct a certain subalgebra, denoted by $\Unkh$, of $\afuglk$. The algebra $\Unkh$ is the affine analogue of the restricted enveloping algebra of $\frak{gl}_n$ over ${\mathbb F}_p$. We will give a realization of $\Unkh$ for each $h\geq 1$. Using $\Unkh$, we construct a certain subalgebra, denoted by $\Unkhr$, of affine Schur algebras over $\field$. The algebra $\Unkhr$ is the affine analogue of little Schur algebras.
專家姓名:付強
工作單位:同濟大學
專長和學術成就:代數群, 量子群專家,曾獲得國家優秀青年基金(2013年),教育部新世紀人才計劃(2010年),霍英東基金(2012年),上海市曙光計劃(2016年),先后主持國家自然科學基金面上項目3項,青年基金1項。
專家簡介:付強, 同濟大學數學科學學院教授,博士生導師, 優秀青年基金獲得者。研究方向: 代數群, 量子群及其表示. 2004年6月在華東師范大學獲博士學位。2004年7月到同濟大學任教, 2010年12月晉升教授。曾獲得國家優秀青年基金(2013年),教育部新世紀人才計劃(2010年),霍英東基金(2012年),上海市曙光計劃(2016年),先后主持國家自然科學基金面上項目3項,青年基金1項。
時間:2020-12-03 13:30:00
地點:騰訊會議(會議號: 116 145 629 密碼:201203)

( 講座具體信息以數字平臺通知為準!)

掃碼分享本頁面
掃碼分享本頁面